Scientists use quantum device to slow chemical process down by 100 billion times

September 01, 2023

Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis. To get around this problem, quantum researchers in the School of Physics and the School of Chemistry created an experiment using a trapped-ion quantum computer in a completely new way. This allowed them to design and map this very complicated problem onto a relatively small quantum device ­– and then slow the process down by a factor of 100 billion. “In nature, the whole process is over within femtoseconds,” said Ms Olaya Agudelo from the School of Chemistry. “That’s a billionth of a millionth – or one quadrillionth – of a second.”“Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds.

Specifically, the research team witnessed the interference pattern of a single atom caused by a common geometric structure in chemistry called a ‘conical intersection’.

Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.

Chemists have tried to directly observe such geometric processes in chemical dynamics since the 1950s, but it is not feasible to observe them directly given the extremely rapid timescales involved.

To get around this problem, quantum researchers in the School of Physics and the School of Chemistry created an experiment using a trapped-ion quantum computer in a completely new way. This allowed them to design and map this very complicated problem onto a relatively small quantum device ­– and then slow the process down by a factor of 100 billion.

Their research findings are published today in Nature Chemistry.

“In nature, the whole process is over within femtoseconds,” said Ms Olaya Agudelo from the School of Chemistry. “That’s a billionth of a millionth – or one quadrillionth – of a second.”

“Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds. This allowed us to make meaningful observations and measurements.

“This has never been done before.”

The source of this news is from University of Sydney

Popular in Research

1

Nov 26, 2023

Finger-shaped sensor enables more dexterous robots

2

Nov 19, 2023

Three Sydney researchers win NSW Premier's Prizes for Science and Engineering

3

4 days ago

Waiting for an eruption: what do we know about the Iceland volcano?

4

4 days ago

Green policies will maximise photovoltaic potential and minimise future energy costs

5

Nov 19, 2023

Downloading NASA's dark matter data from above the clouds

Aboriginal bush foods garden: Growing culture from the ROOTS up

8 hours ago

Biden to deliver a prime-time foreign policy address Thursday

10 hours ago

MIT releases financials and endowment figures for 2023

1 week ago

Will Congestion Pricing Fix NYC's Traffic Problem?

Nov 22, 2023

The Loudest University Tradition: How the NYU Pipes and Drums Band Became a Fixture of Inaugurations and Commencements

2 days ago

Roundup of Key Statements

5 days ago