Scientists use quantum device to slow chemical process down by 100 billion times

September 01, 2023

Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis. To get around this problem, quantum researchers in the School of Physics and the School of Chemistry created an experiment using a trapped-ion quantum computer in a completely new way. This allowed them to design and map this very complicated problem onto a relatively small quantum device ­– and then slow the process down by a factor of 100 billion. “In nature, the whole process is over within femtoseconds,” said Ms Olaya Agudelo from the School of Chemistry. “That’s a billionth of a millionth – or one quadrillionth – of a second.”“Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds.

Specifically, the research team witnessed the interference pattern of a single atom caused by a common geometric structure in chemistry called a ‘conical intersection’.

Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.

Chemists have tried to directly observe such geometric processes in chemical dynamics since the 1950s, but it is not feasible to observe them directly given the extremely rapid timescales involved.

To get around this problem, quantum researchers in the School of Physics and the School of Chemistry created an experiment using a trapped-ion quantum computer in a completely new way. This allowed them to design and map this very complicated problem onto a relatively small quantum device ­– and then slow the process down by a factor of 100 billion.

Their research findings are published today in Nature Chemistry.

“In nature, the whole process is over within femtoseconds,” said Ms Olaya Agudelo from the School of Chemistry. “That’s a billionth of a millionth – or one quadrillionth – of a second.”

“Using our quantum computer, we built a system that allowed us to slow down the chemical dynamics from femtoseconds to milliseconds. This allowed us to make meaningful observations and measurements.

“This has never been done before.”

The source of this news is from University of Sydney

Popular in Research

1

Jul 7, 2024

Scientists use generative AI to answer complex questions in physics

2

Jul 7, 2024

First language song book a hit in the APY Lands

3

Jul 7, 2024

Navigating longevity with industry leaders at MIT AgeLab PLAN Forum

4

Jul 7, 2024

Dismissed and discharged: health systems still failing people with poor mental health

5

Jul 7, 2024

Elaine Liu: Charging ahead

Biden’s ABC Interview Was a Necessary Appointment With the Public — and a Botched One

Jul 7, 2024

No “Serious Condition”: Watch Biden Tell George Stephanopoulos Of Debate Debacle In First Clip From ABC Interview

Jul 6, 2024

American Air, Gate Gourmet Face Pressure on Contracts to Avoid Strikes

Jul 7, 2024

MSN

Jul 7, 2024

NYU Dentistry Names Implant Dentistry Fellowship in Recognition of Major Gift from Alumni Noel Liu and Nazish Jafri

Jul 7, 2024

Biden Aides Provided Questions in Advance for His Radio Interviews

Jul 7, 2024