Researchers Create a Neural Network for Genomics—One that Explains How It Achieves Accurate Predictions

November 21, 2023

A team of New York University computer scientists has created a neural network that can explain how it reaches its predictions. The breakthrough centers on a specific usage of neural networks that has become popular in recent years—tackling challenging biological questions. Specifically, they developed a model—the data-driven equivalent of a high-powered microscope—that allows scientists to trace and quantify the RNA splicing process, from input sequence to output splicing prediction. “Using an ‘interpretable-by-design’ approach, we’ve developed a neural network model that provides insights into RNA splicing—a fundamental process in the transfer of genomic information,” notes Regev. The research was supported by grants from the National Science Foundation (MCB-2226731), the Simons Foundation, the Life Sciences Research Foundation, an Additional Ventures Career Development Award, and a PhRMA Fellowship.

A team of New York University computer scientists has created a neural network that can explain how it reaches its predictions. The work reveals what accounts for the functionality of neural networks—the engines that drive artificial intelligence and machine learning—thereby illuminating a process that has largely been concealed from users.

The breakthrough centers on a specific usage of neural networks that has become popular in recent years—tackling challenging biological questions. Among these are examinations of the intricacies of RNA splicing—the focal point of the study—which plays a role in transferring information from DNA to functional RNA and protein products.

“Many neural networks are black boxes—these algorithms cannot explain how they work, raising concerns about their trustworthiness and stifling progress into understanding the underlying biological processes of genome encoding,” says Oded Regev, a computer science professor at NYU’s Courant Institute of Mathematical Sciences and the senior author of the paper, which appears in the Proceedings of the National Academy of Sciences. “By harnessing a new approach that improves both the quantity and the quality of the data for machine-learning training, we designed an interpretable neural network that can accurately predict complex outcomes and explain how it arrives at its predictions.”

Regev and the paper’s other authors, Susan Liao, a faculty fellow at the Courant Institute, and Mukund Sudarshan, a Courant doctoral student at the time of the study, created a neural network based on what is already known about RNA splicing.

Specifically, they developed a model—the data-driven equivalent of a high-powered microscope—that allows scientists to trace and quantify the RNA splicing process, from input sequence to output splicing prediction.

“Using an ‘interpretable-by-design’ approach, we’ve developed a neural network model that provides insights into RNA splicing—a fundamental process in the transfer of genomic information,” notes Regev. “Our model revealed that a small, hairpin-like structure in RNA can decrease splicing.”

The researchers confirmed the insights their model provides through a series of experiments. These results showed a match with the model’s discovery: Whenever the RNA molecule folded into a hairpin configuration, splicing was halted, and the moment the researchers disrupted this hairpin structure, splicing was restored.

The research was supported by grants from the National Science Foundation (MCB-2226731), the Simons Foundation, the Life Sciences Research Foundation, an Additional Ventures Career Development Award, and a PhRMA Fellowship.

The source of this news is from New York University

Popular in Research

1

Jul 7, 2024

Scientists use generative AI to answer complex questions in physics

2

Jul 7, 2024

First language song book a hit in the APY Lands

3

Jul 7, 2024

Navigating longevity with industry leaders at MIT AgeLab PLAN Forum

4

Jul 7, 2024

Dismissed and discharged: health systems still failing people with poor mental health

5

Jul 7, 2024

Elaine Liu: Charging ahead

Biden’s ABC Interview Was a Necessary Appointment With the Public — and a Botched One

Jul 7, 2024

No “Serious Condition”: Watch Biden Tell George Stephanopoulos Of Debate Debacle In First Clip From ABC Interview

Jul 6, 2024

American Air, Gate Gourmet Face Pressure on Contracts to Avoid Strikes

Jul 7, 2024

MSN

Jul 7, 2024

NYU Dentistry Names Implant Dentistry Fellowship in Recognition of Major Gift from Alumni Noel Liu and Nazish Jafri

Jul 7, 2024

Biden Aides Provided Questions in Advance for His Radio Interviews

Jul 7, 2024