New report into Turkey-Syria earthquakes uncovers deficiencies in building structures and construction shortcuts were the main cause of casualties

March 26, 2024

Findings show that deficiencies were also recorded among even the newest building stock. Critically, despite established technical know-how, state-of-the-art building codes and rigorous building regulations, deficiencies in Reinforced Concrete (RC) structures were found even in the newest building stock . Building stock is primarily composed of Reinforced Concrete structures, which were therefore the main cause of the casualties . A review of building stock and infrastructure is critical to understand risk levels for future earthquakes. Our field work and remote analysis revealed many issues, including the issue of non-compliant buildings with little seismic resilience.

A new, independent field investigation into the aftermath of the Turkey-Syria earthquakes has found that a drive for profit has pushed all players within the construction industry to take shortcuts, with building stock primarily made of Reinforced Concrete (RC) structures, being the main cause of the casualties. 

Findings show that deficiencies were also recorded among even the newest building stock. This is despite established technical know-how, state-of-the-art building codes and rigorous building regulations. 

The longitudinal study report published here today by the Institution of Structural Engineers for EEFIT, was co-led by Cambridge's Professor Emily So, Professor of Architectural Engineering and Director of the Cambridge University Centre for Risk in the Built Environment (CURBE) and Dr Yasemin Didem Aktas from the Faculty of Engineering Sciences at UCL. Some of the findings include:

  • The drive for profit pushes players within the construction industry to take shortcuts. The auditing and quality control mechanisms embedded in the legal and bureaucratic processes should be strengthened to ensure code compliance. The legalisation of non-compliant buildings through amnesties cannot continue. 
  • Critically, despite established technical know-how, state-of-the-art building codes and rigorous building regulations, deficiencies in Reinforced Concrete (RC) structures were found even in the newest building stock. This demonstrates that seismic resilience is not only a technical problem in Turkey, but one that demands a multi-sectoral and interdisciplinary dialogue, scrutinising the regulatory system, bureaucracy, the legal and political backdrop within which the construction sector operates in Turkey. 
  • Building stock is primarily composed of Reinforced Concrete structures, which were therefore the main cause of the casualties. The team saw problems with such structures across their whole lifecycle from design to implementation and post-occupancy stages. The structures therefore did not withstand the seismic pressures.  
  • A review of building stock and infrastructure is critical to understand risk levels for future earthquakes. Lack of publicly available data is a big problem in Turkey, hindering not only a robust inquiry into damage and associated building characteristics, but also reliably establishing the risk profiles for future events. 
  • Debris management and demolishment practices have not fully recognised the potential of mid-/long-term environmental and public health implications. Field observations and contacts in the affected communities show that they are already affected by the poor air quality. The Compulsory Earthquake Insurance (CEI) is a system that was put in place in Turkey following the 1999 earthquakes to provide monetary reserves to fund the management of future disasters. The extent to which these funds have been used and how resources have been allocated remain unclear.' 

Read the full report and findings here.

Professor So says: “The 2023 Türkiye and Syria earthquakes were truly tragic, hitting an already fragile population, including migrants. Our field work and remote analysis revealed many issues, including the issue of non-compliant buildings with little seismic resilience. Building code compliance needs to be strengthened.” 

EEFIT - a joint venture between industry and universities - gathered a team of 30 global experts to assess the damage and develop suggestions to reduce future impacts and vulnerabilities. They studied the science, engineering and data related to the earthquakes including geotechnics, the structural and infrastructure impact, and the relief response and recovery. The team continues to work in the area, to follow the recovery and collaborate with colleagues from Turkey for better seismic resilience.

 

 

The source of this news is from University of Cambridge

Popular in Research

1

Jul 7, 2024

Scientists use generative AI to answer complex questions in physics

2

Jul 7, 2024

First language song book a hit in the APY Lands

3

Jul 7, 2024

Navigating longevity with industry leaders at MIT AgeLab PLAN Forum

4

Jul 7, 2024

Dismissed and discharged: health systems still failing people with poor mental health

5

Jul 7, 2024

Elaine Liu: Charging ahead

Biden’s ABC Interview Was a Necessary Appointment With the Public — and a Botched One

Jul 7, 2024

No “Serious Condition”: Watch Biden Tell George Stephanopoulos Of Debate Debacle In First Clip From ABC Interview

Jul 6, 2024

American Air, Gate Gourmet Face Pressure on Contracts to Avoid Strikes

Jul 7, 2024

MSN

Jul 7, 2024

NYU Dentistry Names Implant Dentistry Fellowship in Recognition of Major Gift from Alumni Noel Liu and Nazish Jafri

Jul 7, 2024

Biden Aides Provided Questions in Advance for His Radio Interviews

Jul 7, 2024