Machine learning boosts the discovery of new perovskite solar cell materials

January 16, 2023

This new approach accelerates computations and can be used to study perovskite alloys. These alloy materials contain many candidates for improved solar cell materials, but studying them has been difficult with conventional computational methods. Having an efficient method for studying the stability of perovskite alloys is a key step towards engineering solar cells that are more resilient to degradation. The same methodology that was applied to perovskites in this study can boost the discovery of other new alloy materials. After the initial success with their machine learning approach, Laakso and collaborators are looking into studying more complex perovskite alloys to discover solar cell materials that are highly efficient, nontoxic, and resilient to degradation.

CEST members Jarno Laakso and Patrick Rinke, with collaborators from University of Turku and China, developed new machine learning-based methodology for rapidly predicting perovskite properties. This new approach accelerates computations and can be used to study perovskite alloys. These alloy materials contain many candidates for improved solar cell materials, but studying them has been difficult with conventional computational methods. The researchers demonstrated the effectiveness of the new approach by finding the most stable mixing fractions for an alloy of CsPbCl3 and CsPbBr3 perovskites. Having an efficient method for studying the stability of perovskite alloys is a key step towards engineering solar cells that are more resilient to degradation.

The same methodology that was applied to perovskites in this study can boost the discovery of other new alloy materials. After the initial success with their machine learning approach, Laakso and collaborators are looking into studying more complex perovskite alloys to discover solar cell materials that are highly efficient, nontoxic, and resilient to degradation.

The paper was published in Physical Review Materials doi.org/10.1103/PhysRevMaterials.6.113801.

The source of this news is from Aalto University

Popular in Research

1

2 days ago

Paper-thin solar cell can turn any surface into a power source

2

Jan 13, 2023

Study Reveals the Intrinsic Immune Mechanism that Boosts Axon Regeneration in the Adult Nervous System

3

Jan 14, 2023

ASCERTAIN: New Horizon Europe research project to improve the affordability and sustainability of innovative health technologies

4

Jan 21, 2023

Financy and UniSA partnership delivers tech platform to take diversity, equity and inclusion measurement to the next level

5

Jan 25, 2023

A healthy wind

Biden says ‘no’ to US sending F-16 fighter jets to Ukraine

6 hours ago

NYU Production Lab Announces Three New Slate Film Projects

1 day ago

Tesla stock suffers worst week since 2020 as Elon Musk sells, large shareholder asks for new CEO

4 hours ago

In Debt Limit Fight, Republicans Won’t Say What Spending Cuts They Want

6 hours ago

Reframing the first-generation academic experience

1 day ago

UNSW community recognised with Australia Day honours

1 day ago