Four from MIT awarded National Medals of Technology, Science

December 15, 2023

At a ceremony this afternoon, President Joe Biden announced the recipients of this year’s National Medals of Technology and Innovation and National Medals of Science. The team was recognized for the invention and commercialization of optical coherence tomography, a breakthrough imaging technology used to identify life- and sight-threatening diseases in tens of millions of patients each year. Fujimoto, Swanson, and Huang join 30 other MIT community members who have been awarded the National Medal of Technology and Innovation. At MIT, Fujimoto and his team in the Biomedical Optical Imaging and Biophotonics Group continue to advance OCT technology to obtain greater speeds and higher resolutions. Dozens of research groups around the world are also working on exciting applications of OCT, Fujimoto says.

“Anything is possible if we put our mind to it, and with you all, you’ve got incredible minds,” President Biden told the honorees. “You’ve saved people’s lives, you’ve changed the way we look at the world, and you made it better. I don’t know that we can ask for anything more.”

Subra Suresh ScD ’81, the Vannevar Bush Professor Emeritus and former dean of the MIT School of Engineering, was awarded the National Medal of Science.

James Fujimoto ’79, SM ’81, PhD ’84, the Elihu Thomson Professor in Electrical Engineering and principal investigator in the Research Laboratory of Electronics (RLE), was a co-recipient of the National Medal of Technology and Innovation along with Eric Swanson SM ’84, a research affiliate at RLE and mentor for the MIT Deshpande Center for Technological Innovation, and David Huang ’85, SM ’89, PhD ’93, professor of ophthalmology at Oregon Health and Science University.

The White House honored four MIT affiliates today with the nation’s highest awards for scientists and innovators. At a ceremony this afternoon, President Joe Biden announced the recipients of this year’s National Medals of Technology and Innovation and National Medals of Science.

President Joe Biden awards Eric Swanson, David Huang, and James Fujimoto (l-r) the National Medal of Technology and Innovation award during a ceremony in the East Room of the White House, Oct. 24, 2023. The team was recognized for the invention and commercialization of optical coherence tomography, a breakthrough imaging technology used to identify life- and sight-threatening diseases in tens of millions of patients each year.

Fujimoto, Swanson, and Huang are being honored for the invention of optical coherence tomography (OCT), a technology that uses reflected light to generate high-resolution images of sensitive tissue, like the eye, in a noninvasive way. OCT, which they introduced in paper published in the journal Science in 1991, has since become the standard of care in ophthalmology and is used in the diagnosis and treatment of many diseases, including macular degeneration, glaucoma, and diabetic retinopathy.

Earlier this year, the three also won the Lasker-DeBakey Clinical Medical Research Award for this influential work.

“The invention of optical coherence tomography represents one of the biggest engineering breakthroughs from MIT in the past few decades. The impact Professor Fujimoto, Dr. David Huang, and Eric Swanson’s research has had on countless patients across the world is truly remarkable and embodies MIT’s mission to work for the betterment of humankind,” says Anantha Chandrakasan, dean of the MIT School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science.

The National Medal of Technology and Innovation, which was established in 1980, recognizes those who have made lasting contributions to America’s competitiveness and quality of life and helped strengthen the nation’s technological workforce. Nominees are selected by a distinguished independent committee representing the private and public sectors.

Fujimoto, Swanson, and Huang join 30 other MIT community members who have been awarded the National Medal of Technology and Innovation.

From bench-top to clinic

In the early 1990s, Fujimoto, an electrical engineer who had joined the MIT faculty in 1985, was studying biomedical applications of advanced laser technologies. His lab was approached by Carmen Puliafito, an ophthalmologist at the New England Eye Center, who asked if they could explore laser applications for eye surgery.

Huang, then an MD-PhD student in Fujimoto’s lab, began a project aimed at measuring the thickness of the retina using an optical technique called interferometry. They joined forces with Eric Swanson, who was then a satellite communications engineer at MIT Lincoln Laboratory and an expert on space communication using optics. Swanson utilized fiber optics and high-speed detection techniques to build a prototype device that was so sensitive that it could not only take precise measurements of the retina, but also be used to see inside it and enable OCT imaging. The resulting instrument produced the first high-resolution cross-sectional images of the microscopic structure of the retina.

“Eric worked on this initially in his spare time. Because of his involvement, we were able to demonstrate that you could do imaging, and that really required using advanced techniques from satellite and optical communications,” Fujimoto says.

OCT imaging works by shining thin beams of light onto tissue, which penetrate beneath its surface. Structures inside the tissue reflect that light back to a detector, but because structures at different depths reflect light differently, it returns to the detector with a time delay.

A computer measures that time delay to construct a depth profile of the structure. OCT uses multiple passes with light beams to generate a series of depth profiles, which are combined into a cross-sectional or 3D image that can show objects under the tissue’s surface.

The biggest challenge of developing OCT was determining how to capture reflections at the speed of light, Fujimoto says.

“Light from the moon reaches Earth in 1.3 seconds. If you are trying to measure something on the cellular scale in biological tissue, incredibly high time resolution is required. And the amount of light that reflects back is very small, on the order of a billionth of the initial intensity. The combination of these is a very hard thing,” he adds.  

With Swanson’s expertise, they were able to overcome these challenges and design an instrument that could work in a medical setting. Clinician scientists Carmen Puliafito and Joel Schuman at the New England Eye Center led clinical studies to image the eyes of more than 5,000 patients with diabetic retinopathy, age related macular degeneration, and glaucoma. 

“These studies laid the foundation for future applications in ophthalmology as well as the commercialization of OCT. Advances were only possible because of multidisciplinary collaboration spanning clinical medicine, science, and engineering,” Fujimoto says.

Today, OCT is the most commonly used ophthalmologic procedure, with tens of millions of scans performed each year internationally. The technique is so precise it can be used to image structures that are only about a thousandth of a millimeter in size.

The future of optical coherence tomography

Beyond its applications in ophthalmology, OCT has been utilized to image coronary plaques in the heart that can cause sudden cardiac arrest and is also being applied for cancer detection and surgical guidance, and in fundamental research.

At MIT, Fujimoto and his team in the Biomedical Optical Imaging and Biophotonics Group continue to advance OCT technology to obtain greater speeds and higher resolutions. With these advances, the technology can be used to capture changes in the microvascular structure of the retina, which can be an early marker of disease. They have also investigated other applications of OCT, including high-resolution in vivo imaging of the GI tract for early cancer detection.

Dozens of research groups around the world are also working on exciting applications of OCT, Fujimoto says. One promising future direction involves using the technology to map blood vessels and assess blood flow noninvasively by looking at the motion of blood cells. Other groups are utilizing OCT in neuroscience research.

And some companies are now working to create OCT devices that could be used in pharmacies or community health centers to screen for undetected systemic disease, such as diabetes, in larger numbers of patients who don’t have easy access to screening, especially those in underserved communities.

“Development of technology that makes an impact requires continued commitment over a long period of time. Of course you need an inventive advance, but there are a lot of advances along the way that might be perceived as incremental. But when you combine many incremental advances with contributions from the international scientific community and people from different disciplines who have different perspectives, it can be transformative,” Fujimoto says.

The source of this news is from Massachusetts Institute of Technology

Popular in Research

1

Feb 12, 2024

DTU Scientist Co-Authors International Paper on COVID-19

2

5 days ago

Two Simple Words May Help Decide Immigration Case Before the High Court

3

Feb 5, 2024

Evaluating the Truthfulness of Fake News Through Online Searches Increases the Chances of Believing Misinformation

4

Feb 5, 2024

The Opportunities and Pitfalls of Place-Based Philanthropy

5

Feb 9, 2024

Australian researchers discover what turned Earth into a snowball 700m years ago

Sotomayor and Barrett stress Supreme Court camaraderie

13 hours ago

Supreme Court agrees to weigh whether Trump can be kicked off ballot in Colorado

3 days ago

Japan's Nikkei crosses 39,000 as robust earnings, investor-friendly measures drive risk-on sentiment

1 day ago

Trump received millions of dollars from foreign governments while president, House Democrats allege

4 days ago

Climate action, here and now

13 hours ago

Institute Professor Emeritus Robert Solow, pathbreaking economist, dies at age 99

3 days ago