Earth’s earliest forest revealed in Somerset fossils

April 24, 2024

“The Devonian period fundamentally changed life on Earth,” said Professor Neil Davies from Cambridge’s Department of Earth Sciences, the study’s first author. During the Devonian period, this region was not attached to the rest of England, but instead lay further south, connected to parts of Germany and Belgium, where similar Devonian fossils have been found. The researchers identified fossilised plants and plant debris, fossilised tree logs, traces of roots and sedimentary structures, preserved within the sandstone. “This was a pretty weird forest – not like any forest you would see today,” said Davies. ‘Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England.’ Journal of the Geological Society (2024).

The forest dates to the Devonian Period, between 419 million and 358 million years ago, when life started its first big expansion onto land: by the end of the period, the first seed-bearing plants appeared and the earliest land animals, mostly arthropods, were well-established.

“The Devonian period fundamentally changed life on Earth,” said Professor Neil Davies from Cambridge’s Department of Earth Sciences, the study’s first author. “It also changed how water and land interacted with each other, since trees and other plants helped stabilise sediment through their root systems, but little is known about the very earliest forests.”

The fossil forest identified by the researchers was found in the Hangman Sandstone Formation, along the north Devon and west Somerset coasts. During the Devonian period, this region was not attached to the rest of England, but instead lay further south, connected to parts of Germany and Belgium, where similar Devonian fossils have been found.

“When I first saw pictures of the tree trunks I immediately knew what they were, based on 30 years of studying this type of tree worldwide” said co-author Dr Christopher Berry from Cardiff’s School of Earth and Environmental Sciences. “It was amazing to see them so near to home. But the most revealing insight comes from seeing, for the first time, these trees in the positions where they grew. It is our first opportunity to look directly at the ecology of this earliest type of forest, to interpret the environment in which Calamophyton trees were growing, and to evaluate their impact on the sedimentary system.”

The fieldwork was undertaken along the highest sea cliffs in England, some of which are only accessible by boat, and revealed that this sandstone formation is rich with plant fossil material from the Devonian period. The researchers identified fossilised plants and plant debris, fossilised tree logs, traces of roots and sedimentary structures, preserved within the sandstone. During the Devonian, the site was a semi-arid plain, crisscrossed by small river channels spilling out from mountains to the northwest.

“This was a pretty weird forest – not like any forest you would see today,” said Davies. “There wasn’t any undergrowth to speak of and grass hadn’t yet appeared, but there were lots of twigs dropped by these densely-packed trees, which had a big effect on the landscape.”

This period marked the first time that tightly-packed plants were able to grow on land, and the sheer abundance of debris shed by the Calamophyton trees built up within layers of sediment. The sediment affected the way that the rivers flowed across the landscape, the first time that the course of rivers could be affected in this way.

“The evidence contained in these fossils preserves a key stage in Earth’s development, when rivers started to operate in a fundamentally different way than they had before, becoming the great erosive force they are today,” said Davies. “People sometimes think that British rocks have been looked at enough, but this shows that revisiting them can yield important new discoveries.”

The research was supported in part by the Natural Environment Research Council (NERC), part of UK Research and Innovation (UKRI). Neil Davies is a Fellow of Churchill College, Cambridge.

Reference:
Neil S. Davies, William J. McMahon and Christopher M. Barry. ‘Earth's earliest forest: fossilized trees and vegetation-induced sedimentary structures from the Middle Devonian (Eifelian) Hangman Sandstone Formation, Somerset and Devon, SW England.’ Journal of the Geological Society (2024). DOI: 10.1144/jgs2023-204

The source of this news is from University of Cambridge

Popular in Research

1

Apr 20, 2024

How early-stage cancer cells hide from the immune system

2

Apr 20, 2024

Three Lincoln Laboratory inventions named IEEE Milestones

3

Apr 20, 2024

Low-Cost Liquid Tames Tooth Decay

4

Apr 24, 2024

NYU to Host Zaheer Ali at the Annual Liberal Studies Student Research Colloquium—April 5

5

Apr 24, 2024

Your kids’ screen time may be more creative than you think

There’s progress reported in Gaza truce talks, but Israel downplays chances of ending war with Hamas

2 hours ago

Ambassador Martin Kimani of Kenya Named Executive Director of the Center on International Cooperation

1 day ago

Trump loses bid to block Michael Cohen, Stormy Daniels testimony at hush money trial

1 day ago

Surging Gasoline Prices Add Inflation Risk in US Election Year

Apr 27, 2024

Black High School Students Less Likely to Enroll in AP Math Courses Than White Students with Similar Academic Preparedness, Study Finds

1 day ago

Fox News takes down Hunter Biden ‘mock trial’ miniseries after lawsuit threat

4 days ago