The off-patent drug that could protect us from future COVID-19 variants

January 21, 2023

Dr Sampaziotis had previously been working with organoids – ‘mini-bile ducts’ – to study diseases of the bile ducts. They went on to show that ursodeoxycholic acid (UDCA), an off-patent drug used to treat a form of liver disease known as primary biliary cholangitis, ‘turns down’ FXR and closes the ACE2 doorway. Lung organoids (Credit: Teresa Brevini) Lung organoids (Credit: Teresa Brevini)The next step was to show that the drug could prevent infection not only in lab-grown cells but also in living organisms. Importantly, the hamsters treated with UDCA were protected from the delta variant of the virus, which was new at the time and was partially resistant to existing vaccines. “Although we will need properly-controlled randomised trials to confirm these findings, the data provide compelling evidence that UDCA could work as a drug to protect against COVID-19 and complement vaccination programmes, particularly in vulnerable population groups.”Professor Andrew Owen, University of Liverpool

Dr Sampaziotis had previously been working with organoids – ‘mini-bile ducts’ – to study diseases of the bile ducts. Organoids are clusters of cells that can grow and proliferate in culture, taking on a 3D structure that has the same functions as the part of the organ being studied.

Using these, the researchers found – rather serendipitously – that  a molecule known as FXR, which is present in large amounts in these bile duct organoids, directly regulates the viral ‘doorway’ ACE2, effectively opening and closing it. They went on to show that ursodeoxycholic acid (UDCA), an off-patent drug used to treat a form of liver disease known as primary biliary cholangitis, ‘turns down’ FXR and closes the ACE2 doorway.

In this new study, his team showed that they could use the same approach to close the ACE2 doorway in ‘mini-lungs’ and ‘mini-guts’ – representing the two main targets of SARS-CoV-2 – and prevent viral infection.

Lung organoids (Credit: Teresa Brevini)

Lung organoids (Credit: Teresa Brevini)

The next step was to show that the drug could prevent infection not only in lab-grown cells but also in living organisms. For this, they teamed up with Professor Andrew Owen from the University of Liverpool to show that the drug prevented infection in hamsters exposed to the virus, which are used as the ‘gold-standard’ model for pre-clinical testing of drugs against SARS-CoV-2. Importantly, the hamsters treated with UDCA were protected from the delta variant of the virus, which was new at the time and was partially resistant to existing vaccines.

“Although we will need properly-controlled randomised trials to confirm these findings, the data provide compelling evidence that UDCA could work as a drug to protect against COVID-19 and complement vaccination programmes, particularly in vulnerable population groups.”

Professor Andrew Owen, University of Liverpool

The source of this news is from University of Cambridge

Popular in Research

1

2 days ago

Paper-thin solar cell can turn any surface into a power source

2

Jan 13, 2023

Study Reveals the Intrinsic Immune Mechanism that Boosts Axon Regeneration in the Adult Nervous System

3

Jan 14, 2023

ASCERTAIN: New Horizon Europe research project to improve the affordability and sustainability of innovative health technologies

4

Jan 21, 2023

Financy and UniSA partnership delivers tech platform to take diversity, equity and inclusion measurement to the next level

5

Jan 25, 2023

A healthy wind

Biden says ‘no’ to US sending F-16 fighter jets to Ukraine

7 hours ago

NYU Production Lab Announces Three New Slate Film Projects

1 day ago

Tesla stock suffers worst week since 2020 as Elon Musk sells, large shareholder asks for new CEO

5 hours ago

In Debt Limit Fight, Republicans Won’t Say What Spending Cuts They Want

7 hours ago

Reframing the first-generation academic experience

1 day ago

UNSW community recognised with Australia Day honours

1 day ago