Flatworm-inspired medical adhesives stop blood loss

November 29, 2022

To stop the bleeding, doctors often apply pressure to the wound and seal the site with medical glue. Drawing inspiration from nature, researchers from McGill University have developed a medical adhesive that could save lives, modeled after structures found in marine animals like mussels and flatworms. In putting the new technology to the test, the researchers found that the adhesive promotes blood coagulation. About McGill UniversityFounded in Montreal, Quebec, in 1821, McGill University is Canada’s top ranked medical doctoral university. Over half of McGill students claim a first language other than English, including approximately 20% of our students who say French is their mother tongue.

Every year around 2 million people die worldwide from hemorrhaging or blood loss. Uncontrolled hemorrhaging accounts for more than 30% of trauma deaths. To stop the bleeding, doctors often apply pressure to the wound and seal the site with medical glue. But what happens when applying pressure is difficult or could make things worse? Or the surface of the wound is too bloody for glue? Drawing inspiration from nature, researchers from McGill University have developed a medical adhesive that could save lives, modeled after structures found in marine animals like mussels and flatworms.

“When applied to the bleeding site, the new adhesive uses suction to absorb blood, clear the surface for adhesion, and bond to the tissue providing a physical seal. The entire application process is quick and pressure-free, which is suitable for non-compressible hemorrhage situations, which are often life-threatening,” says lead author Guangyu Bao, a recently graduated PhD student under the supervision of Professor Jianyu Li of Department of Mechanical Engineering.

In putting the new technology to the test, the researchers found that the adhesive promotes blood coagulation. The adhesive can also be removed without causing re-bleeding or even left inside the body to be absorbed. “Our material showed much better-improved safety and bleeding control efficiency than other commercial products. Beyond bleeding control, our material could one day replace wound sutures or deliver drugs to provide therapeutic effects,” says senior author Professor Jianyu Li.

About this study

Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage” by Guangyu Bao et al. was published in Nature Communications.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill University is Canada’s top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning three campuses, 11 faculties, 13 professional schools, 300 programs of study and over 39,000 students, including more than 10,400 graduate students. McGill attracts students from over 150 countries around the world, its 12,000 international students making up 30% of the student body. Over half of McGill students claim a first language other than English, including approximately 20% of our students who say French is their mother tongue.

The source of this news is from Mc Gill University

Popular in Research

1

Apr 6, 2024

Conspiracy theory runs wild linking New York City’s 4.8-magnitude earthquake to date of solar eclipse

2

Apr 9, 2024

The rise of Dawn

3

Apr 9, 2024

High School Biology Textbooks Do Not Provide Students with a Comprehensive View of the Science of Sex and Gender

4

4 days ago

How early-stage cancer cells hide from the immune system

5

4 days ago

Three Lincoln Laboratory inventions named IEEE Milestones

Cool Course: Investigating Injustice

9 hours ago

Trump offers lukewarm, glitchy response to Biden criticism

11 hours ago

Silence broken on gender pay gaps but we must hold organisations to account

1 week ago

Nasdaq Futures Up 2% as Nvidia Powers Global Rally: Markets Wrap

Apr 8, 2024

Think Potluck, Not 'Melting Pot’

9 hours ago

Four-peat: MIT students take first place in the 84th Putnam Math Competition

9 hours ago