Astronomers detect a radio “heartbeat” billions of light-years from Earth

September 04, 2022

Astronomers at McGill University, MIT and elsewhere have detected a strange and persistent radio signal from a far-off galaxy, that appears to be flashing with surprising regularity. Within this window, the team detected bursts of radio waves that repeat every 0.2 seconds in a clear periodic pattern. The researchers have labeled the signal FRB 20191221A. “Examples that we know of in our own galaxy are radio pulsars and magnetars, which rotate and produce a beamed emission similar to a lighthouse. Brilliant burstsIn analyzing the pattern of FRB 20191221A’s radio bursts, Michilli and his colleagues found similarities with emissions from radio pulsars and magnetars in our own galaxy.

Astronomers at McGill University, MIT and elsewhere have detected a strange and persistent radio signal from a far-off galaxy, that appears to be flashing with surprising regularity. Classified as a fast radio burst, or FRB, this new signal persists for up to three seconds, about 1,000 times longer than the average FRB. Within this window, the team detected bursts of radio waves that repeat every 0.2 seconds in a clear periodic pattern.

The researchers have labeled the signal FRB 20191221A. It is currently the longest-lasting FRB, with the clearest periodic pattern, detected to date. The discovery is reported in the journal Nature and is authored by members of the CHIME/FRB Collaboration.

On December 21, 2019, the CHIME telescope picked up a signal of a potential FRB, which immediately drew the attention of Daniele Michilli, who noticed something unusual while scanning the incoming data.

“Not only was it very long, lasting about three seconds, but there were periodic peaks that were remarkably precise, emitting every fraction of a second — boom, boom, boom — like a heartbeat,” recalls Michilli, who led the research, initially while at McGill University and then as a postdoc at MIT. “This is the first time the signal itself is periodic.”

“There are not many things in the universe that emit strictly periodic signals,” adds Aaron Pearlman, a FRQNT postdoctoral fellow at the McGill Space Institute who also collaborated on the paper. “Examples that we know of in our own galaxy are radio pulsars and magnetars, which rotate and produce a beamed emission similar to a lighthouse. And we think this new signal could be a magnetar or pulsar on steroids.”

The team hopes to detect more periodic signals from this source, which could then be used as an astrophysical clock. For instance, the frequency of the bursts, and how they change as the source moves away from Earth, could be used to measure the rate at which the universe is expanding.

Brilliant bursts

In analyzing the pattern of FRB 20191221A’s radio bursts, Michilli and his colleagues found similarities with emissions from radio pulsars and magnetars in our own galaxy. Radio pulsars are neutron stars that emit beams of radio waves, appearing to pulse as the star rotates, while a similar emission is produced by magnetars due to their extreme magnetic fields.

The main difference between the new signal and radio emissions from our own galactic pulsars and magnetars is that FRB 20191221A appears to be more than a million times brighter. Michilli says the luminous flashes may originate from a distant radio pulsar or magnetar that is normally less bright as it rotates and for some unknown reason ejected a train of brilliant bursts, in a rare three-second window that CHIME was luckily positioned to catch.

“CHIME has now detected many FRBs with different properties,” Michilli says. “We’ve seen some that live inside clouds that are very turbulent, while others look like they’re in clean environments. From the properties of this new signal, we can say that around this source, there’s a cloud of plasma that must be extremely turbulent.”

The astronomers hope to catch additional bursts from the periodic FRB 20191221A, which can help to refine their understanding of its source, and of neutron stars in general.

“This detection raises the question of what could cause this extreme signal that we’ve never seen before, and how we can use this signal to study the universe,” Michilli says. “Future telescopes promise to discover thousands of FRBs a month, and at that point we may find many more of these periodic signals.”

“Sub-second periodicity in a fast radio burst” by Bridget Andersen et al. in Nature

DOI: https://doi.org/10.1038/s41586-022-04841-8

Written in collaboration with Jennifer Chu, MIT News Office

 

The source of this news is from Mc Gill University

Popular in Research

1

Apr 6, 2024

Conspiracy theory runs wild linking New York City’s 4.8-magnitude earthquake to date of solar eclipse

2

Apr 4, 2024

Five Sydney researchers honoured by Australian Academy of Science

3

Apr 9, 2024

The rise of Dawn

4

Apr 9, 2024

High School Biology Textbooks Do Not Provide Students with a Comprehensive View of the Science of Sex and Gender

5

3 days ago

How early-stage cancer cells hide from the immune system

Supreme Court rules Colorado can't keep Trump off ballot

3 days ago

Nikki Haley gets first 2024 win in the Washington, D.C., GOP primary

4 days ago

Silence broken on gender pay gaps but we must hold organisations to account

6 days ago

Nasdaq Futures Up 2% as Nvidia Powers Global Rally: Markets Wrap

Apr 8, 2024

Investigating and preserving Quechua

6 days ago

Biden visits his Pennsylvania hometown to call for more taxes on the rich and cast Trump as elitist

6 days ago