Post-Doc - Development Of A Pulsed, Intense And Highly Repetitive Electron Source Based On Pseudo-...

Universities and Institutes of France
December 15, 2022
Contact:N/A
Offerd Salary:Negotiation
Location:N/A
Working address:N/A
Contract Type:Temporary
Working Time:Full time
Working type:N/A
Job Ref.:N/A
  • Organisation/Company: ONERA
  • Research Field: Physics › Applied physics Physics › Other
  • Researcher Profile: First Stage Researcher (R1)
  • Application Deadline: 15/12/2022 18:00 - Europe/Athens
  • Location: France › PALAISEAU
  • Type Of Contract: Temporary
  • Job Status: Full-time
  • Hours Per Week: 39
  • Offer Starting Date: 01/01/2023
  • When lightning strikes an aircraft, the structure undergoes significant thermomechanical stresses for about a hundred microseconds due to the formation a high-temperature and high-pressure plasma. To improve our knowledge of these plasmas, ONERA is currently testing an innovative X-ray imaging technique, based on the X-ray phase contrast (XPCI), which is sensitive to refractive index gradients in matter. Currently, these developments are mainly carried out at synchrotrons. However, access is limited to a few days per year, and lightning current generators are difficult to transport over there.

    In this context, having an intense, compact and pulsed laboratory X-ray source makes more and more sense. A way to get there is to develop a compact pulsed electron source, delivering a focused electron beam. ONERA, but also the international scene, consider an approach based on pseudo-spark switches. Pseudo-spark discharge is a low-pressure gas discharge (~10-2 mbar), initiated by hollow-cathode mechanisms. When electrical breakdown occurs, a diffuse plasma forms allowing the pseudo-spark to conduct currents of several kA with minimal electrode wear. Simultaneously, the pseudo-spark emits a focused electron beam of several tens of keV for a few tens of nanoseconds, reaching kiloAmpere currents. ONERA has developed an expertise in the 2000s on pseudo-sparks (see figure opposite), and wishes to extend its expertise. On the one hand, we aim at increasing the repetition rate of pseudo-sparks, needed for plasma dynamics studies. On the other hand, we aim at making these sources more compact to consider other applications than lightning, for example for in-flight electron beam diagnostics.

    The goal of the post-doc is to develop and characterise an electron source based on a pseudo-spark switch which is compact, pulsed with a high repetition rate (kHz) and intense (kA). Your first task will be to get familiar with an existing pseudo-spark operating at low repetition rate (100 Hz). After optimizing the triggering electrical circuit, you will be able to develop a high repetition rate model. You will characterise the electron beam and compare with PIC simulations (code developed in the hosting group). Finally, depending on the working progress, a commissioning of the electron source as plasma diagnostics and/or X-ray source can be considered. This will imply to compare the electron beam performance with existing electron guns or to evaluate the quality of the X-ray source in the context of phase contrast imaging.

    Offer Requirements
  • REQUIRED EDUCATION LEVEL
  • Physics: PhD or equivalent

    Skills/Qualifications

    PhD in experimental physics or electrical engineering. Skills in low-pressure plasma or X-ray imaging are preferable. Some knowledge about high voltage circuits is a plus but not required.

    Contact Information
  • Organisation/Company: ONERA
  • Department: DPHY
  • Organisation Type: Public Research Institution
  • Website: https: // www. onera.fr
  • Country: France
  • City: PALAISEAU
  • Postal Code: 91123
  • Street: chemin de la Huniere
  • Phone: +33180386430
  • From this employer

    Recent blogs

    Recent news